Metamath Proof Explorer


Theorem mpllmod

Description: The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p 𝑃 = ( 𝐼 mPoly 𝑅 )
Assertion mpllmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑃 ∈ LMod )

Proof

Step Hyp Ref Expression
1 mplgrp.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 eqid ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 )
3 simpl ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝐼𝑉 )
4 simpr ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑅 ∈ Ring )
5 2 3 4 psrlmod ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( 𝐼 mPwSer 𝑅 ) ∈ LMod )
6 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
7 2 1 6 3 4 mpllss ( ( 𝐼𝑉𝑅 ∈ Ring ) → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) )
8 1 2 6 mplval2 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) )
9 eqid ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) )
10 8 9 lsslmod ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑃 ∈ LMod )
11 5 7 10 syl2anc ( ( 𝐼𝑉𝑅 ∈ Ring ) → 𝑃 ∈ LMod )