Metamath Proof Explorer


Theorem mulcnsrec

Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecid , which shows that the coset of the converse membership relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs .

Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi . (Contributed by NM, 13-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcnsrec ( ( ( 𝐴R𝐵R ) ∧ ( 𝐶R𝐷R ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] E · [ ⟨ 𝐶 , 𝐷 ⟩ ] E ) = [ ⟨ ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ⟩ ] E )

Proof

Step Hyp Ref Expression
1 mulcnsr ( ( ( 𝐴R𝐵R ) ∧ ( 𝐶R𝐷R ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ · ⟨ 𝐶 , 𝐷 ⟩ ) = ⟨ ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ⟩ )
2 opex 𝐴 , 𝐵 ⟩ ∈ V
3 2 ecid [ ⟨ 𝐴 , 𝐵 ⟩ ] E = ⟨ 𝐴 , 𝐵
4 opex 𝐶 , 𝐷 ⟩ ∈ V
5 4 ecid [ ⟨ 𝐶 , 𝐷 ⟩ ] E = ⟨ 𝐶 , 𝐷
6 3 5 oveq12i ( [ ⟨ 𝐴 , 𝐵 ⟩ ] E · [ ⟨ 𝐶 , 𝐷 ⟩ ] E ) = ( ⟨ 𝐴 , 𝐵 ⟩ · ⟨ 𝐶 , 𝐷 ⟩ )
7 opex ⟨ ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ⟩ ∈ V
8 7 ecid [ ⟨ ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ⟩ ] E = ⟨ ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ⟩
9 1 6 8 3eqtr4g ( ( ( 𝐴R𝐵R ) ∧ ( 𝐶R𝐷R ) ) → ( [ ⟨ 𝐴 , 𝐵 ⟩ ] E · [ ⟨ 𝐶 , 𝐷 ⟩ ] E ) = [ ⟨ ( ( 𝐴 ·R 𝐶 ) +R ( -1R ·R ( 𝐵 ·R 𝐷 ) ) ) , ( ( 𝐵 ·R 𝐶 ) +R ( 𝐴 ·R 𝐷 ) ) ⟩ ] E )