Description: Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muls12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| muls12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| muls12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| Assertion | muls12d | ⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) = ( 𝐵 ·s ( 𝐴 ·s 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | muls12d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | muls12d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | muls12d.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | 1 2 | mulscomd | ⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( 𝐵 ·s 𝐴 ) ) | 
| 5 | 4 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( ( 𝐵 ·s 𝐴 ) ·s 𝐶 ) ) | 
| 6 | 1 2 3 | mulsassd | ⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) | 
| 7 | 2 1 3 | mulsassd | ⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) ·s 𝐶 ) = ( 𝐵 ·s ( 𝐴 ·s 𝐶 ) ) ) | 
| 8 | 5 6 7 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) = ( 𝐵 ·s ( 𝐴 ·s 𝐶 ) ) ) |