| Step | Hyp | Ref | Expression | 
						
							| 1 |  | con3 | ⊢ ( ( 𝜑  →  𝜓 )  →  ( ¬  𝜓  →  ¬  𝜑 ) ) | 
						
							| 2 | 1 | orim2d | ⊢ ( ( 𝜑  →  𝜓 )  →  ( ( ¬  𝜒  ∨  ¬  𝜓 )  →  ( ¬  𝜒  ∨  ¬  𝜑 ) ) ) | 
						
							| 3 |  | pm3.13 | ⊢ ( ¬  ( 𝜒  ∧  𝜓 )  →  ( ¬  𝜒  ∨  ¬  𝜓 ) ) | 
						
							| 4 |  | pm3.14 | ⊢ ( ( ¬  𝜒  ∨  ¬  𝜑 )  →  ¬  ( 𝜒  ∧  𝜑 ) ) | 
						
							| 5 | 3 4 | imim12i | ⊢ ( ( ( ¬  𝜒  ∨  ¬  𝜓 )  →  ( ¬  𝜒  ∨  ¬  𝜑 ) )  →  ( ¬  ( 𝜒  ∧  𝜓 )  →  ¬  ( 𝜒  ∧  𝜑 ) ) ) | 
						
							| 6 |  | df-nan | ⊢ ( ( 𝜒  ⊼  𝜓 )  ↔  ¬  ( 𝜒  ∧  𝜓 ) ) | 
						
							| 7 |  | df-nan | ⊢ ( ( 𝜒  ⊼  𝜑 )  ↔  ¬  ( 𝜒  ∧  𝜑 ) ) | 
						
							| 8 | 5 6 7 | 3imtr4g | ⊢ ( ( ( ¬  𝜒  ∨  ¬  𝜓 )  →  ( ¬  𝜒  ∨  ¬  𝜑 ) )  →  ( ( 𝜒  ⊼  𝜓 )  →  ( 𝜒  ⊼  𝜑 ) ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( ( 𝜑  →  𝜓 )  →  ( ( 𝜒  ⊼  𝜓 )  →  ( 𝜒  ⊼  𝜑 ) ) ) |