Metamath Proof Explorer


Theorem negsubdi2

Description: Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999)

Ref Expression
Assertion negsubdi2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴𝐵 ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 negsubdi ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴𝐵 ) = ( - 𝐴 + 𝐵 ) )
2 negcl ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ )
3 addcom ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 + 𝐵 ) = ( 𝐵 + - 𝐴 ) )
4 2 3 sylan ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 + 𝐵 ) = ( 𝐵 + - 𝐴 ) )
5 negsub ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + - 𝐴 ) = ( 𝐵𝐴 ) )
6 5 ancoms ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + - 𝐴 ) = ( 𝐵𝐴 ) )
7 1 4 6 3eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴𝐵 ) = ( 𝐵𝐴 ) )