Description: Surreal negation in terms of subtraction. (Contributed by Scott Fenton, 15-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negsval2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| Assertion | negsval2d | ⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negsval2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | negsval2 | ⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( -us ‘ 𝐴 ) = ( 0s -s 𝐴 ) ) |