Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Introduce the Axiom of Regularity
nelaneqOLD
Metamath Proof Explorer
Description: Obsolete version of nelaneq as of 31-Dec-2025. (Proposed by BJ,
18-Jun-2022.) (Contributed by AV , 18-Jun-2022)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
nelaneqOLD
⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
elneq
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵 )
2
orc
⊢ ( ¬ 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵 ) )
3
neneq
⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵 )
4
3
olcd
⊢ ( 𝐴 ≠ 𝐵 → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵 ) )
5
2 4
ja
⊢ ( ( 𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵 ) → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵 ) )
6
1 5
ax-mp
⊢ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵 )
7
ianor
⊢ ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵 ) ↔ ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐴 = 𝐵 ) )
8
6 7
mpbir
⊢ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵 )