Metamath Proof Explorer


Theorem nf2

Description: Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021)

Ref Expression
Assertion nf2 ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-nf ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
2 imor ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∨ ∀ 𝑥 𝜑 ) )
3 orcom ( ( ¬ ∃ 𝑥 𝜑 ∨ ∀ 𝑥 𝜑 ) ↔ ( ∀ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜑 ) )
4 1 2 3 3bitri ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜑 ) )