Metamath Proof Explorer
		
		
		
		Description:  Bound-variable hypothesis builder for a function.  (Contributed by NM, 30-Jan-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | nffun.1 | ⊢ Ⅎ 𝑥 𝐹 | 
				
					|  | Assertion | nffun | ⊢  Ⅎ 𝑥 Fun  𝐹 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nffun.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | df-fun | ⊢ ( Fun  𝐹  ↔  ( Rel  𝐹  ∧  ( 𝐹  ∘  ◡ 𝐹 )  ⊆   I  ) ) | 
						
							| 3 | 1 | nfrel | ⊢ Ⅎ 𝑥 Rel  𝐹 | 
						
							| 4 | 1 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝐹 | 
						
							| 5 | 1 4 | nfco | ⊢ Ⅎ 𝑥 ( 𝐹  ∘  ◡ 𝐹 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥  I | 
						
							| 7 | 5 6 | nfss | ⊢ Ⅎ 𝑥 ( 𝐹  ∘  ◡ 𝐹 )  ⊆   I | 
						
							| 8 | 3 7 | nfan | ⊢ Ⅎ 𝑥 ( Rel  𝐹  ∧  ( 𝐹  ∘  ◡ 𝐹 )  ⊆   I  ) | 
						
							| 9 | 2 8 | nfxfr | ⊢ Ⅎ 𝑥 Fun  𝐹 |