Metamath Proof Explorer


Theorem nfich2

Description: The second interchangeable setvar variable is not free. (Contributed by AV, 21-Aug-2023)

Ref Expression
Assertion nfich2 𝑦 [ 𝑥𝑦 ] 𝜑

Proof

Step Hyp Ref Expression
1 df-ich ( [ 𝑥𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑𝜑 ) )
2 nfa2 𝑦𝑥𝑦 ( [ 𝑥 / 𝑎 ] [ 𝑦 / 𝑥 ] [ 𝑎 / 𝑦 ] 𝜑𝜑 )
3 1 2 nfxfr 𝑦 [ 𝑥𝑦 ] 𝜑