| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ngpds2.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
ngpds2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
ngpds2.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
ngpds2.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
| 5 |
|
ngpxms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ ∞MetSp ) |
| 6 |
1 4
|
xmssym |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 7 |
5 6
|
syl3an1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) ) |
| 8 |
1 2 3 4
|
ngpds2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |
| 9 |
8
|
3com23 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |
| 10 |
7 9
|
eqtrd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( 𝐵 − 𝐴 ) 𝐷 0 ) ) |