Metamath Proof Explorer


Theorem nmoub2i

Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
nmoubi.l 𝐿 = ( normCV𝑈 )
nmoubi.m 𝑀 = ( normCV𝑊 )
nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion nmoub2i ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥𝑋 ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) ) → ( 𝑁𝑇 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
3 nmoubi.l 𝐿 = ( normCV𝑈 )
4 nmoubi.m 𝑀 = ( normCV𝑊 )
5 nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
6 nmoubi.u 𝑈 ∈ NrmCVec
7 nmoubi.w 𝑊 ∈ NrmCVec
8 1 2 3 4 5 6 7 nmoub3i ( ( 𝑇 : 𝑋𝑌𝐴 ∈ ℝ ∧ ∀ 𝑥𝑋 ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) ) → ( 𝑁𝑇 ) ≤ ( abs ‘ 𝐴 ) )
9 8 3adant2r ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥𝑋 ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) ) → ( 𝑁𝑇 ) ≤ ( abs ‘ 𝐴 ) )
10 absid ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 )
11 10 3ad2ant2 ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥𝑋 ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) ) → ( abs ‘ 𝐴 ) = 𝐴 )
12 9 11 breqtrd ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥𝑋 ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) ) → ( 𝑁𝑇 ) ≤ 𝐴 )