Metamath Proof Explorer


Theorem nn0absid

Description: A nonnegative integer is its own absolute value. (Contributed by AV, 22-Nov-2025)

Ref Expression
Assertion nn0absid ( 𝑁 ∈ ℕ0 → ( abs ‘ 𝑁 ) = 𝑁 )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
2 nn0ge0 ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 )
3 1 2 absidd ( 𝑁 ∈ ℕ0 → ( abs ‘ 𝑁 ) = 𝑁 )