Description: The zero vector belongs to an orthogonal complement of a Hilbert subspace. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oc0 | ⊢ ( 𝐻 ∈ Sℋ → 0ℎ ∈ ( ⊥ ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shocsh | ⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) | |
| 2 | sh0 | ⊢ ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ → 0ℎ ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐻 ∈ Sℋ → 0ℎ ∈ ( ⊥ ‘ 𝐻 ) ) |