Metamath Proof Explorer


Theorem ofeq

Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Assertion ofeq ( 𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V ) → 𝑅 = 𝑆 )
2 1 oveqd ( ( 𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V ) → ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) = ( ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) ) )
3 2 mpteq2dv ( ( 𝑅 = 𝑆𝑓 ∈ V ∧ 𝑔 ∈ V ) → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) ) ) )
4 3 mpoeq3dva ( 𝑅 = 𝑆 → ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) ) = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) ) ) ) )
5 df-of f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑅 ( 𝑔𝑥 ) ) ) )
6 df-of f 𝑆 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓𝑥 ) 𝑆 ( 𝑔𝑥 ) ) ) )
7 4 5 6 3eqtr4g ( 𝑅 = 𝑆 → ∘f 𝑅 = ∘f 𝑆 )