Metamath Proof Explorer


Theorem onepsuc

Description: Every ordinal is less than its successor, relationship version. Lemma 1.7 of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion onepsuc ( 𝐴 ∈ On → 𝐴 E suc 𝐴 )

Proof

Step Hyp Ref Expression
1 sucidg ( 𝐴 ∈ On → 𝐴 ∈ suc 𝐴 )
2 onsuc ( 𝐴 ∈ On → suc 𝐴 ∈ On )
3 epelg ( suc 𝐴 ∈ On → ( 𝐴 E suc 𝐴𝐴 ∈ suc 𝐴 ) )
4 2 3 syl ( 𝐴 ∈ On → ( 𝐴 E suc 𝐴𝐴 ∈ suc 𝐴 ) )
5 1 4 mpbird ( 𝐴 ∈ On → 𝐴 E suc 𝐴 )