Metamath Proof Explorer


Theorem opres

Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Hypothesis opres.1 𝐵 ∈ V
Assertion opres ( 𝐴𝐷 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 opres.1 𝐵 ∈ V
2 1 opelresi ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ( 𝐴𝐷 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) )
3 2 baib ( 𝐴𝐷 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( 𝐶𝐷 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝐶 ) )