Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
opsrplusg
Metamath Proof Explorer
Description: The addition operation of the ordered power series structure.
(Contributed by Mario Carneiro , 8-Feb-2015) (Revised by Mario
Carneiro , 30-Aug-2015) (Revised by AV , 1-Nov-2024)
Ref
Expression
Hypotheses
opsrbas.s
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 )
opsrbas.o
⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrbas.t
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) )
Assertion
opsrplusg
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑂 ) )
Proof
Step
Hyp
Ref
Expression
1
opsrbas.s
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 )
2
opsrbas.o
⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
3
opsrbas.t
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) )
4
plusgid
⊢ +g = Slot ( +g ‘ ndx )
5
plendxnplusgndx
⊢ ( le ‘ ndx ) ≠ ( +g ‘ ndx )
6
5
necomi
⊢ ( +g ‘ ndx ) ≠ ( le ‘ ndx )
7
1 2 3 4 6
opsrbaslem
⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑂 ) )