Description: Virtual deduction proof of orbi1r . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
| 1:: | |- (. ( ph <-> ps ) ->. ( ph <-> ps ) ). |
| 2:: | |- (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ch \/ ph ) ). |
| 3:2,?: e2 | |- (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ph \/ ch ) ). |
| 4:1,3,?: e12 | |- (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ps \/ ch ) ). |
| 5:4,?: e2 | |- (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ch \/ ps ) ). |
| 6:5: | |- (. ( ph <-> ps ) ->. ( ( ch \/ ph ) -> ( ch \/ ps ) ) ). |
| 7:: | |- (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ch \/ ps ) ). |
| 8:7,?: e2 | |- (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ps \/ ch ) ). |
| 9:1,8,?: e12 | |- (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ph \/ ch ) ). |
| 10:9,?: e2 | |- (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ch \/ ph ) ). |
| 11:10: | |- (. ( ph <-> ps ) ->. ( ( ch \/ ps ) -> ( ch \/ ph ) ) ). |
| 12:6,11,?: e11 | |- (. ( ph <-> ps ) ->. ( ( ch \/ ph ) <-> ( ch \/ ps ) ) ). |
| qed:12: | |- ( ( ph <-> ps ) -> ( ( ch \/ ph ) <-> ( ch \/ ps ) ) ) |
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orbi1rVD | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜒 ∨ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ▶ ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | idn2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜑 ) ▶ ( 𝜒 ∨ 𝜑 ) ) | |
| 3 | pm1.4 | ⊢ ( ( 𝜒 ∨ 𝜑 ) → ( 𝜑 ∨ 𝜒 ) ) | |
| 4 | 2 3 | e2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜑 ) ▶ ( 𝜑 ∨ 𝜒 ) ) |
| 5 | orbi1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) ↔ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 6 | 5 | biimpd | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ) |
| 7 | 1 4 6 | e12 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜑 ) ▶ ( 𝜓 ∨ 𝜒 ) ) |
| 8 | pm1.4 | ⊢ ( ( 𝜓 ∨ 𝜒 ) → ( 𝜒 ∨ 𝜓 ) ) | |
| 9 | 7 8 | e2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜑 ) ▶ ( 𝜒 ∨ 𝜓 ) ) |
| 10 | 9 | in2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ▶ ( ( 𝜒 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜓 ) ) ) |
| 11 | idn2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜓 ) ▶ ( 𝜒 ∨ 𝜓 ) ) | |
| 12 | pm1.4 | ⊢ ( ( 𝜒 ∨ 𝜓 ) → ( 𝜓 ∨ 𝜒 ) ) | |
| 13 | 11 12 | e2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜓 ) ▶ ( 𝜓 ∨ 𝜒 ) ) |
| 14 | 5 | biimprd | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
| 15 | 1 13 14 | e12 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜓 ) ▶ ( 𝜑 ∨ 𝜒 ) ) |
| 16 | pm1.4 | ⊢ ( ( 𝜑 ∨ 𝜒 ) → ( 𝜒 ∨ 𝜑 ) ) | |
| 17 | 15 16 | e2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ∨ 𝜓 ) ▶ ( 𝜒 ∨ 𝜑 ) ) |
| 18 | 17 | in2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ▶ ( ( 𝜒 ∨ 𝜓 ) → ( 𝜒 ∨ 𝜑 ) ) ) |
| 19 | impbi | ⊢ ( ( ( 𝜒 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜓 ) ) → ( ( ( 𝜒 ∨ 𝜓 ) → ( 𝜒 ∨ 𝜑 ) ) → ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜒 ∨ 𝜓 ) ) ) ) | |
| 20 | 10 18 19 | e11 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ▶ ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜒 ∨ 𝜓 ) ) ) |
| 21 | 20 | in1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ∨ 𝜑 ) ↔ ( 𝜒 ∨ 𝜓 ) ) ) |