Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 26-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) | |
| 2 | elong | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 ∈ On ↔ Ord 𝐵 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ∈ On ↔ Ord 𝐵 ) ) |
| 4 | 1 3 | mpbird | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) |