Metamath Proof Explorer


Theorem parteq1i

Description: Equality theorem for partition, inference version. (Contributed by Peter Mazsa, 5-Oct-2021)

Ref Expression
Hypothesis parteq1i.1 𝑅 = 𝑆
Assertion parteq1i ( 𝑅 Part 𝐴𝑆 Part 𝐴 )

Proof

Step Hyp Ref Expression
1 parteq1i.1 𝑅 = 𝑆
2 parteq1 ( 𝑅 = 𝑆 → ( 𝑅 Part 𝐴𝑆 Part 𝐴 ) )
3 1 2 ax-mp ( 𝑅 Part 𝐴𝑆 Part 𝐴 )