Metamath Proof Explorer


Theorem prnmadd

Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prnmadd ( ( 𝐴P𝐵𝐴 ) → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 prnmax ( ( 𝐴P𝐵𝐴 ) → ∃ 𝑦𝐴 𝐵 <Q 𝑦 )
2 ltrelnq <Q ⊆ ( Q × Q )
3 2 brel ( 𝐵 <Q 𝑦 → ( 𝐵Q𝑦Q ) )
4 3 simprd ( 𝐵 <Q 𝑦𝑦Q )
5 ltexnq ( 𝑦Q → ( 𝐵 <Q 𝑦 ↔ ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) )
6 5 biimpcd ( 𝐵 <Q 𝑦 → ( 𝑦Q → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 ) )
7 4 6 mpd ( 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 )
8 eleq1a ( 𝑦𝐴 → ( ( 𝐵 +Q 𝑥 ) = 𝑦 → ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) )
9 8 eximdv ( 𝑦𝐴 → ( ∃ 𝑥 ( 𝐵 +Q 𝑥 ) = 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) )
10 7 9 syl5 ( 𝑦𝐴 → ( 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 ) )
11 10 rexlimiv ( ∃ 𝑦𝐴 𝐵 <Q 𝑦 → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 )
12 1 11 syl ( ( 𝐴P𝐵𝐴 ) → ∃ 𝑥 ( 𝐵 +Q 𝑥 ) ∈ 𝐴 )