Metamath Proof Explorer
Description: Infer that a multiplicand is positive from a nonnegative multiplier and
positive product. (Contributed by NM, 15-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
|
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
|
Assertion |
prodgt0i |
⊢ ( ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
prodgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐵 ) |
| 4 |
1 2 3
|
mpanl12 |
⊢ ( ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < 𝐵 ) |