Metamath Proof Explorer


Theorem psgndmsubg

Description: The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgneldm.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgneldm.n 𝑁 = ( pmSgn ‘ 𝐷 )
Assertion psgndmsubg ( 𝐷𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 psgneldm.g 𝐺 = ( SymGrp ‘ 𝐷 )
2 psgneldm.n 𝑁 = ( pmSgn ‘ 𝐷 )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 eqid { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin }
5 1 3 4 2 psgnfn 𝑁 Fn { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin }
6 fndm ( 𝑁 Fn { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } → dom 𝑁 = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } )
7 5 6 ax-mp dom 𝑁 = { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin }
8 1 3 symgfisg ( 𝐷𝑉 → { 𝑝 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ∈ ( SubGrp ‘ 𝐺 ) )
9 7 8 eqeltrid ( 𝐷𝑉 → dom 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )