| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgneldm.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgneldm.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 5 | 1 3 4 2 | psgnfn | ⊢ 𝑁  Fn  { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 6 |  | fndm | ⊢ ( 𝑁  Fn  { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  →  dom  𝑁  =  { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ dom  𝑁  =  { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 8 | 1 3 | symgfisg | ⊢ ( 𝐷  ∈  𝑉  →  { 𝑝  ∈  ( Base ‘ 𝐺 )  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 9 | 7 8 | eqeltrid | ⊢ ( 𝐷  ∈  𝑉  →  dom  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) |