Description: The ring of univariate power series is a commutative ring. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psr1val.1 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| Assertion | psr1crng | ⊢ ( 𝑅 ∈ CRing → 𝑆 ∈ CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psr1val.1 | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| 2 | 1 | psr1val | ⊢ 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ ) |
| 3 | 1on | ⊢ 1o ∈ On | |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ CRing → 1o ∈ On ) |
| 5 | id | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) | |
| 6 | 0ss | ⊢ ∅ ⊆ ( 1o × 1o ) | |
| 7 | 6 | a1i | ⊢ ( 𝑅 ∈ CRing → ∅ ⊆ ( 1o × 1o ) ) |
| 8 | 2 4 5 7 | opsrcrng | ⊢ ( 𝑅 ∈ CRing → 𝑆 ∈ CRing ) |