Metamath Proof Explorer


Theorem psrbagf

Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024)

Ref Expression
Hypothesis psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
Assertion psrbagf ( 𝐹𝐷𝐹 : 𝐼 ⟶ ℕ0 )

Proof

Step Hyp Ref Expression
1 psrbag.d 𝐷 = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
2 1 eleq2i ( 𝐹𝐷𝐹 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } )
3 elrabi ( 𝐹 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } → 𝐹 ∈ ( ℕ0m 𝐼 ) )
4 elmapi ( 𝐹 ∈ ( ℕ0m 𝐼 ) → 𝐹 : 𝐼 ⟶ ℕ0 )
5 3 4 syl ( 𝐹 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } → 𝐹 : 𝐼 ⟶ ℕ0 )
6 2 5 sylbi ( 𝐹𝐷𝐹 : 𝐼 ⟶ ℕ0 )