Metamath Proof Explorer
		
		
		
		Description:  An equality inference for the proper subclass relationship.
         (Contributed by NM, 9-Jun-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | psseq1i.1 | ⊢ 𝐴  =  𝐵 | 
					
						|  |  | psseq12i.2 | ⊢ 𝐶  =  𝐷 | 
				
					|  | Assertion | psseq12i | ⊢  ( 𝐴  ⊊  𝐶  ↔  𝐵  ⊊  𝐷 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psseq1i.1 | ⊢ 𝐴  =  𝐵 | 
						
							| 2 |  | psseq12i.2 | ⊢ 𝐶  =  𝐷 | 
						
							| 3 | 1 | psseq1i | ⊢ ( 𝐴  ⊊  𝐶  ↔  𝐵  ⊊  𝐶 ) | 
						
							| 4 | 2 | psseq2i | ⊢ ( 𝐵  ⊊  𝐶  ↔  𝐵  ⊊  𝐷 ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( 𝐴  ⊊  𝐶  ↔  𝐵  ⊊  𝐷 ) |