Metamath Proof Explorer
		
		
		
		Description:  Proper subclass inclusion is transitive.  Deduction form of psstr .
       (Contributed by David Moews, 1-May-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | psstrd.1 | ⊢ ( 𝜑  →  𝐴  ⊊  𝐵 ) | 
					
						|  |  | psstrd.2 | ⊢ ( 𝜑  →  𝐵  ⊊  𝐶 ) | 
				
					|  | Assertion | psstrd | ⊢  ( 𝜑  →  𝐴  ⊊  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psstrd.1 | ⊢ ( 𝜑  →  𝐴  ⊊  𝐵 ) | 
						
							| 2 |  | psstrd.2 | ⊢ ( 𝜑  →  𝐵  ⊊  𝐶 ) | 
						
							| 3 |  | psstr | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐵  ⊊  𝐶 )  →  𝐴  ⊊  𝐶 ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  𝐴  ⊊  𝐶 ) |