Metamath Proof Explorer


Theorem pw2f1o

Description: The power set of a set is equinumerous to set exponentiation with an unordered pair base of ordinal 2. Generalized from Proposition 10.44 of TakeutiZaring p. 96. (Contributed by Mario Carneiro, 6-Oct-2014)

Ref Expression
Hypotheses pw2f1o.1 ( 𝜑𝐴𝑉 )
pw2f1o.2 ( 𝜑𝐵𝑊 )
pw2f1o.3 ( 𝜑𝐶𝑊 )
pw2f1o.4 ( 𝜑𝐵𝐶 )
pw2f1o.5 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) )
Assertion pw2f1o ( 𝜑𝐹 : 𝒫 𝐴1-1-onto→ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 pw2f1o.1 ( 𝜑𝐴𝑉 )
2 pw2f1o.2 ( 𝜑𝐵𝑊 )
3 pw2f1o.3 ( 𝜑𝐶𝑊 )
4 pw2f1o.4 ( 𝜑𝐵𝐶 )
5 pw2f1o.5 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) )
6 eqid ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) )
7 1 2 3 4 pw2f1olem ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ) ↔ ( ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) )
8 7 biimpa ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ) ) → ( ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) )
9 6 8 mpanr2 ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ) → ( ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) )
10 9 simpld ( ( 𝜑𝑥 ∈ 𝒫 𝐴 ) → ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) )
11 vex 𝑦 ∈ V
12 11 cnvex 𝑦 ∈ V
13 12 imaex ( 𝑦 “ { 𝐶 } ) ∈ V
14 13 a1i ( ( 𝜑𝑦 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) → ( 𝑦 “ { 𝐶 } ) ∈ V )
15 1 2 3 4 pw2f1olem ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴𝑦 = ( 𝑧𝐴 ↦ if ( 𝑧𝑥 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝑦 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( 𝑦 “ { 𝐶 } ) ) ) )
16 5 10 14 15 f1od ( 𝜑𝐹 : 𝒫 𝐴1-1-onto→ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) )