Step |
Hyp |
Ref |
Expression |
1 |
|
pw2f1o.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
pw2f1o.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
pw2f1o.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
4 |
|
pw2f1o.4 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
5 |
|
pw2f1o.5 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) |
6 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) |
7 |
1 2 3 4
|
pw2f1olem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) ↔ ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) ) |
8 |
7
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) ) → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) |
9 |
6 8
|
mpanr2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) “ { 𝐶 } ) ) ) |
10 |
9
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
11
|
cnvex |
⊢ ◡ 𝑦 ∈ V |
13 |
12
|
imaex |
⊢ ( ◡ 𝑦 “ { 𝐶 } ) ∈ V |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) → ( ◡ 𝑦 “ { 𝐶 } ) ∈ V ) |
15 |
1 2 3 4
|
pw2f1olem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑥 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝑦 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑥 = ( ◡ 𝑦 “ { 𝐶 } ) ) ) ) |
16 |
5 10 14 15
|
f1od |
⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –1-1-onto→ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ) |