Metamath Proof Explorer


Theorem qlax5i

Description: One of the equations showing CH is an ortholattice. (This corresponds to axiom "ax-5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlax.1 𝐴C
qlax.2 𝐵C
Assertion qlax5i ( 𝐴 ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) = 𝐴

Proof

Step Hyp Ref Expression
1 qlax.1 𝐴C
2 qlax.2 𝐵C
3 1 2 chdmj2i ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) )
4 3 oveq2i ( 𝐴 ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) = ( 𝐴 ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )
5 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
6 1 5 chabs1i ( 𝐴 ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴
7 4 6 eqtri ( 𝐴 ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) = 𝐴