Description: One of the equations showing CH is an ortholattice. (This corresponds to axiom "ax-5" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlax.1 | ⊢ 𝐴 ∈ Cℋ | |
qlax.2 | ⊢ 𝐵 ∈ Cℋ | ||
Assertion | qlax5i | ⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlax.1 | ⊢ 𝐴 ∈ Cℋ | |
2 | qlax.2 | ⊢ 𝐵 ∈ Cℋ | |
3 | 1 2 | chdmj2i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) |
4 | 3 | oveq2i | ⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
5 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
6 | 1 5 | chabs1i | ⊢ ( 𝐴 ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 |
7 | 4 6 | eqtri | ⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) = 𝐴 |