Metamath Proof Explorer


Theorem qsel

Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion qsel ( ( 𝑅 Er 𝑋𝐵 ∈ ( 𝐴 / 𝑅 ) ∧ 𝐶𝐵 ) → 𝐵 = [ 𝐶 ] 𝑅 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 )
2 eleq2 ( [ 𝑥 ] 𝑅 = 𝐵 → ( 𝐶 ∈ [ 𝑥 ] 𝑅𝐶𝐵 ) )
3 eqeq1 ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅𝐵 = [ 𝐶 ] 𝑅 ) )
4 2 3 imbi12d ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( 𝐶 ∈ [ 𝑥 ] 𝑅 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ↔ ( 𝐶𝐵𝐵 = [ 𝐶 ] 𝑅 ) ) )
5 elecg ( ( 𝐶 ∈ [ 𝑥 ] 𝑅𝑥 ∈ V ) → ( 𝐶 ∈ [ 𝑥 ] 𝑅𝑥 𝑅 𝐶 ) )
6 5 elvd ( 𝐶 ∈ [ 𝑥 ] 𝑅 → ( 𝐶 ∈ [ 𝑥 ] 𝑅𝑥 𝑅 𝐶 ) )
7 6 ibi ( 𝐶 ∈ [ 𝑥 ] 𝑅𝑥 𝑅 𝐶 )
8 simpll ( ( ( 𝑅 Er 𝑋𝑥𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → 𝑅 Er 𝑋 )
9 simpr ( ( ( 𝑅 Er 𝑋𝑥𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 )
10 8 9 erthi ( ( ( 𝑅 Er 𝑋𝑥𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 )
11 10 ex ( ( 𝑅 Er 𝑋𝑥𝐴 ) → ( 𝑥 𝑅 𝐶 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) )
12 7 11 syl5 ( ( 𝑅 Er 𝑋𝑥𝐴 ) → ( 𝐶 ∈ [ 𝑥 ] 𝑅 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) )
13 1 4 12 ectocld ( ( 𝑅 Er 𝑋𝐵 ∈ ( 𝐴 / 𝑅 ) ) → ( 𝐶𝐵𝐵 = [ 𝐶 ] 𝑅 ) )
14 13 3impia ( ( 𝑅 Er 𝑋𝐵 ∈ ( 𝐴 / 𝑅 ) ∧ 𝐶𝐵 ) → 𝐵 = [ 𝐶 ] 𝑅 )