Metamath Proof Explorer


Theorem r2ex

Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 10-Jan-2020)

Ref Expression
Assertion r2ex ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r2al ( ∀ 𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ¬ 𝜑 ) )
2 1 r2exlem ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) )