Metamath Proof Explorer


Theorem ralimd6vOLD

Description: Obsolete version of ralimdvv as of 18-Nov-2025. (Contributed by Scott Fenton, 2-Mar-2025) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis ralim6dvOLD.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ralimd6vOLD ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜓 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralim6dvOLD.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 ralimdvvOLD ( 𝜑 → ( ∀ 𝑝𝐸𝑞𝐹 𝜓 → ∀ 𝑝𝐸𝑞𝐹 𝜒 ) )
3 2 ralimd4vOLD ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜓 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜒 ) )