| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankr1b.1 |
⊢ 𝐴 ∈ V |
| 2 |
1
|
rankuniss |
⊢ ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) |
| 3 |
2
|
biantru |
⊢ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ∧ ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) ) |
| 4 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 5 |
1
|
rankval4 |
⊢ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| 6 |
5
|
sseq1i |
⊢ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ↔ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 7 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
| 8 |
|
rankon |
⊢ ( rank ‘ ∪ 𝐴 ) ∈ On |
| 9 |
7 8
|
onsucssi |
⊢ ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 10 |
9
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 11 |
4 6 10
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ) |
| 12 |
|
eqss |
⊢ ( ( rank ‘ 𝐴 ) = ( rank ‘ ∪ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ∪ 𝐴 ) ∧ ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) ) |
| 13 |
3 11 12
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ ∪ 𝐴 ) ↔ ( rank ‘ 𝐴 ) = ( rank ‘ ∪ 𝐴 ) ) |