Metamath Proof Explorer


Theorem rdgdmlim

Description: The domain of the recursive definition generator is a limit ordinal. (Contributed by NM, 16-Nov-2014)

Ref Expression
Assertion rdgdmlim Lim dom rec ( 𝐹 , 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rdg rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ran 𝑔 , ( 𝐹 ‘ ( 𝑔 dom 𝑔 ) ) ) ) ) )
2 1 tfr1a ( Fun rec ( 𝐹 , 𝐴 ) ∧ Lim dom rec ( 𝐹 , 𝐴 ) )
3 2 simpri Lim dom rec ( 𝐹 , 𝐴 )