| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mercolem2 | ⊢ ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) ) | 
						
							| 2 |  | mercolem2 | ⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) ) | 
						
							| 3 |  | mercolem6 | ⊢ ( ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) )  →  ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( ( ( ( 𝜑  →  𝜑 )  →  𝜑 )  →  ( 𝜑  →  ( 𝜑  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) ) | 
						
							| 5 | 1 4 | ax-mp | ⊢ ( ( ( 𝜑  →  𝜓 )  →  𝜑 )  →  𝜑 ) |