Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmlmd | ⊢ Rel dom Limit |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmd | ⊢ Limit = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑓 ∈ ( 𝑑 Func 𝑐 ) ↦ ( ( oppFunc ‘ ( 𝑐 Δfunc 𝑑 ) ) ( ( oppCat ‘ 𝑐 ) UP ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) ) 𝑓 ) ) ) | |
| 2 | 1 | reldmmpo | ⊢ Rel dom Limit |