Metamath Proof Explorer


Theorem reldmlmd

Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025)

Ref Expression
Assertion reldmlmd Rel dom Limit

Proof

Step Hyp Ref Expression
1 df-lmd Limit = ( 𝑐 ∈ V , 𝑑 ∈ V ↦ ( 𝑓 ∈ ( 𝑑 Func 𝑐 ) ↦ ( ( oppFunc ‘ ( 𝑐 Δfunc 𝑑 ) ) ( ( oppCat ‘ 𝑐 ) UP ( oppCat ‘ ( 𝑑 FuncCat 𝑐 ) ) ) 𝑓 ) ) )
2 1 reldmmpo Rel dom Limit