Metamath Proof Explorer


Theorem reldmup

Description: The domain of UP is a relation. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Assertion reldmup Rel dom UP

Proof

Step Hyp Ref Expression
1 df-up UP = ( 𝑑 ∈ V , 𝑒 ∈ V ↦ ( Base ‘ 𝑑 ) / 𝑏 ( Base ‘ 𝑒 ) / 𝑐 ( Hom ‘ 𝑑 ) / ( Hom ‘ 𝑒 ) / 𝑗 ( comp ‘ 𝑒 ) / 𝑜 ( 𝑓 ∈ ( 𝑑 Func 𝑒 ) , 𝑤𝑐 ↦ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥𝑏𝑚 ∈ ( 𝑤 𝑗 ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦𝑏𝑔 ∈ ( 𝑤 𝑗 ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ 𝑜 ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) )
2 1 reldmmpo Rel dom UP