Metamath Proof Explorer


Theorem relsn

Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013)

Ref Expression
Hypothesis relsn.1 𝐴 ∈ V
Assertion relsn ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) )

Proof

Step Hyp Ref Expression
1 relsn.1 𝐴 ∈ V
2 relsng ( 𝐴 ∈ V → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) )
3 1 2 ax-mp ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) )