Metamath Proof Explorer


Theorem remimd

Description: Value of the conjugate of a complex number. The value is the real part minus _i times the imaginary part. Definition 10-3.2 of Gleason p. 132. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion remimd ( 𝜑 → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 recld.1 ( 𝜑𝐴 ∈ ℂ )
2 remim ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) )
3 1 2 syl ( 𝜑 → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) )