Metamath Proof Explorer


Theorem reopn

Description: The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion reopn ℝ ∈ ( topGen ‘ ran (,) )

Proof

Step Hyp Ref Expression
1 retop ( topGen ‘ ran (,) ) ∈ Top
2 uniretop ℝ = ( topGen ‘ ran (,) )
3 2 topopn ( ( topGen ‘ ran (,) ) ∈ Top → ℝ ∈ ( topGen ‘ ran (,) ) )
4 1 3 ax-mp ℝ ∈ ( topGen ‘ ran (,) )