Metamath Proof Explorer


Theorem resdmres

Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007)

Ref Expression
Assertion resdmres ( 𝐴 ↾ dom ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 in12 ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) = ( ( 𝐵 × V ) ∩ ( 𝐴 ∩ ( dom 𝐴 × V ) ) )
2 df-res ( 𝐴 ↾ dom 𝐴 ) = ( 𝐴 ∩ ( dom 𝐴 × V ) )
3 resdm2 ( 𝐴 ↾ dom 𝐴 ) = 𝐴
4 2 3 eqtr3i ( 𝐴 ∩ ( dom 𝐴 × V ) ) = 𝐴
5 4 ineq2i ( ( 𝐵 × V ) ∩ ( 𝐴 ∩ ( dom 𝐴 × V ) ) ) = ( ( 𝐵 × V ) ∩ 𝐴 )
6 incom ( ( 𝐵 × V ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝐵 × V ) )
7 1 5 6 3eqtri ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) = ( 𝐴 ∩ ( 𝐵 × V ) )
8 df-res ( 𝐴 ↾ dom ( 𝐴𝐵 ) ) = ( 𝐴 ∩ ( dom ( 𝐴𝐵 ) × V ) )
9 dmres dom ( 𝐴𝐵 ) = ( 𝐵 ∩ dom 𝐴 )
10 9 xpeq1i ( dom ( 𝐴𝐵 ) × V ) = ( ( 𝐵 ∩ dom 𝐴 ) × V )
11 xpindir ( ( 𝐵 ∩ dom 𝐴 ) × V ) = ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) )
12 10 11 eqtri ( dom ( 𝐴𝐵 ) × V ) = ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) )
13 12 ineq2i ( 𝐴 ∩ ( dom ( 𝐴𝐵 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) )
14 8 13 eqtri ( 𝐴 ↾ dom ( 𝐴𝐵 ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) )
15 df-res ( 𝐴𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) )
16 7 14 15 3eqtr4i ( 𝐴 ↾ dom ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
17 rescnvcnv ( 𝐴𝐵 ) = ( 𝐴𝐵 )
18 16 17 eqtri ( 𝐴 ↾ dom ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )