Metamath Proof Explorer


Theorem resincld

Description: Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis resincld.1 ( 𝜑𝐴 ∈ ℝ )
Assertion resincld ( 𝜑 → ( sin ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 resincld.1 ( 𝜑𝐴 ∈ ℝ )
2 resincl ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝜑 → ( sin ‘ 𝐴 ) ∈ ℝ )