Metamath Proof Explorer


Theorem rimrcl2

Description: Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025)

Ref Expression
Assertion rimrcl2 ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 ∈ Ring )

Proof

Step Hyp Ref Expression
1 rimrhm ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
2 rhmrcl2 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring )
3 1 2 syl ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝑆 ∈ Ring )