Metamath Proof Explorer
		
		
		
		Description:  Negation formula for Y sequence (odd function).  (Contributed by Stefan
     O'Rear, 22-Sep-2014)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | rmyneg | ⊢  ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Yrm  - 𝑁 )  =  - ( 𝐴  Yrm  𝑁 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmxyneg | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( ( 𝐴  Xrm  - 𝑁 )  =  ( 𝐴  Xrm  𝑁 )  ∧  ( 𝐴  Yrm  - 𝑁 )  =  - ( 𝐴  Yrm  𝑁 ) ) ) | 
						
							| 2 | 1 | simprd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Yrm  - 𝑁 )  =  - ( 𝐴  Yrm  𝑁 ) ) |