Metamath Proof Explorer


Theorem rspe

Description: Restricted specialization. (Contributed by NM, 12-Oct-1999)

Ref Expression
Assertion rspe ( ( 𝑥𝐴𝜑 ) → ∃ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 19.8a ( ( 𝑥𝐴𝜑 ) → ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
2 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
3 1 2 sylibr ( ( 𝑥𝐴𝜑 ) → ∃ 𝑥𝐴 𝜑 )