Description: Restricted specialization. (Contributed by NM, 12-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | rspe | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
3 | 1 2 | sylibr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ∈ 𝐴 𝜑 ) |