Metamath Proof Explorer
Theorem ruv
Description: The Russell class is equal to the universe _V . Exercise 5 of
TakeutiZaring p. 22. (Contributed by Alan Sare, 4-Oct-2008)
|
|
Ref |
Expression |
|
Assertion |
ruv |
⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } = V |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑥 ∈ V |
| 2 |
|
elirr |
⊢ ¬ 𝑥 ∈ 𝑥 |
| 3 |
2
|
nelir |
⊢ 𝑥 ∉ 𝑥 |
| 4 |
1 3
|
2th |
⊢ ( 𝑥 ∈ V ↔ 𝑥 ∉ 𝑥 ) |
| 5 |
4
|
eqabi |
⊢ V = { 𝑥 ∣ 𝑥 ∉ 𝑥 } |
| 6 |
5
|
eqcomi |
⊢ { 𝑥 ∣ 𝑥 ∉ 𝑥 } = V |