Metamath Proof Explorer
		
		
		
		Description:  Equivalence for substitution.  (Contributed by NM, 2-Jun-1993)  (Proof
       shortened by Wolf Lammen, 23-Sep-2018)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | sb6a | ⊢  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcov | ⊢ ( [ 𝑦  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 2 |  | sb6 | ⊢ ( [ 𝑦  /  𝑥 ] [ 𝑥  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  [ 𝑥  /  𝑦 ] 𝜑 ) ) | 
						
							| 3 | 1 2 | bitr3i | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  [ 𝑥  /  𝑦 ] 𝜑 ) ) |