Description: Move negation in and out of class substitution. One direction of sbcng that holds for proper classes. (Contributed by NM, 17-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcn1 | ⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝜑 → 𝐴 ∈ V ) | |
| 2 | sbcng | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | biimpd | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | 1 3 | mpcom | ⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝜑 → ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |