Metamath Proof Explorer


Theorem sblim

Description: Substitution in an implication with a variable not free in the consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013) (Revised by Mario Carneiro, 4-Oct-2016)

Ref Expression
Hypothesis sblim.1 𝑥 𝜓
Assertion sblim ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 sblim.1 𝑥 𝜓
2 sbim ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
3 1 sbf ( [ 𝑦 / 𝑥 ] 𝜓𝜓 )
4 3 imbi2i ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
5 2 4 bitri ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )